Victron SmartShunt installieren – meine Anleitung für Camper, Auto und Smart‑Home

👉 Direkt auf YouTube schauen und abonnieren:
Smart Home & More auf YouTube

Als Technikliebhaber und Camper habe ich mich schon oft gefragt, wie viel Strom eigentlich noch in meiner Batterie steckt. Die Spannung ist ein guter Anhaltspunkt, aber sie verrät nicht immer, wie viel Kapazität wirklich übrig ist. Deshalb habe ich mich entschieden, den Victron SmartShunt zu installieren. Dieser kleine Helfer ersetzt klassische Batteriemonitore, misst Strom und Spannung und berechnet daraus den Ladezustand. In diesem Blogbeitrag nehme ich dich mit auf meine Reise und erkläre dir Schritt für Schritt, wie auch du den Victron SmartShunt installieren kannst, um deine Batterie in Camper, Auto oder Haus zuverlässig zu überwachen.

Ich arbeite mich dabei vom grundsätzlichen Verständnis bis zur vollständigen Integration in Home Assistant vor. Du erhältst Tipps zu verschiedenen Ausführungen des Shunts, zur Verkabelung, zur Einrichtung der Victron‑App und zur Nutzung eines Bluetooth‑Proxys. Außerdem zeige ich dir, wie ich den Victron SmartShunt installieren und anschließend in Home Assistant visualisieren konnte, inklusive einer hübschen Batterieanzeige und nützlichen Automatisierungen.

Warum den Victron SmartShunt installieren?

Als Erstes stellt sich die Frage: Warum sollte ich überhaupt einen Victron SmartShunt installieren? Die Antwort liegt in der präzisen Messung und Visualisierung. Anders als simple Spannungsmesser misst der SmartShunt nicht nur die Spannung, sondern auch den Stromfluss und berechnet daraus den Ladezustand der Batterie. In meinem Camper ermöglicht mir das eine verlässliche Autarkieplanung. Im Auto sehe ich, ob die Starterbatterie bei langen Standzeiten schwächelt, und im Haus kann ich Speicherbatterien von Solaranlagen überwachen. Ein weiterer Vorteil: Durch Bluetooth‑Funktionalität kann ich die Werte drahtlos auslesen und in mein Smart‑Home integrieren.

Wenn du regelmäßig campst oder ein autarkes Setup betreibst, wirst du es zu schätzen wissen, jederzeit zu wissen, wie viel Restkapazität zur Verfügung steht. Auch beim Überwintern des Autos kann es sinnvoll sein, den Victron SmartShunt zu installieren, damit die Batterie nicht unbemerkt tiefentladen wird. In Kombination mit Home Assistant ermöglicht der Shunt außerdem schicke Dashboards und Automationen – etwa eine Benachrichtigung, wenn der Ladezustand kritisch wird.

Funktionsweise des Victron SmartShunt

Bevor ich den Victron SmartShunt installieren konnte, habe ich mich mit seiner Funktionsweise beschäftigt. Der SmartShunt wird in die Masseleitung der Batterie eingebaut und misst den Strom, der hinein- und herausfließt. Zusammen mit der Batteriespannung kann er so die entnommene und zugeführte Energie berechnen und daraus den State of Charge (SoC) ermitteln. Der Vorteil: Du brauchst kein zusätzliches Display, denn die Daten lassen sich per Bluetooth oder über den integrierten VE.Direct‑Port auslesen. Ich habe mich für die Bluetooth Variante entschieden, da sie mir eine nahtlose und einfache Installation in Home Assistant ermöglicht.

Es gibt unterschiedliche Varianten: 300 A, 500 A und 1000 A. Für einen Camper reicht die 300‑A‑Variante zumeist völlig aus. In Hausinstallationen oder bei großen Off‑Grid‑Systemen können auch die größere Varianten sinnvoll sein. Bevor du den Victron SmartShunt* installieren willst, solltest du dir also überlegen, welche Ströme in deinem Setup fließen. Achte darauf, dass die maximale Stromstärke der Verbraucher und der Ladevorgänge im Rahmen des Shunts liegt.

Victron Energy SmartShunt Batteriewächter (Bluetooth) – Victron Shunt – Batteriemonitor – 6.5V-70V – 500 Amp
  • VICTRON ENERGY BATTERIEWÄCHTER: Victron Energy SmartShunt zeigt den Ladezustand der Batterie in % an und fungiert als Ladezustandsanzeige für Ihre Batterien
  • ALL-IN-ONE-BATTERIEMONITOR: Victron Energy Smartshunt ist ein hervorragender, einfach einzurichtender All-in-One-Batteriewächter. Es zeichnet Spannung, Strom, Energie und verbleibende Zeit und vieles mehr auf.
  • BLUETOOTH: Verbinden Sie Victron Energy Shunt über Bluetooth mit Ihrem Telefon oder Tablet und ändern Sie einfach die Einstellungen oder überwachen Sie Ihre Batterien – sparen Sie Platz, indem Sie kein eigenes Display verwenden
  • VERBINDEN SIE VICTRON ENERGY GX: Victron Energy GX-Gerät mit einem VE.Direct-Kabel an, um eine zweite Batterie, den Mittelpunkt der Bank oder die Temperatur zu überwachen (möglicherweise sind zusätzliche Teile erforderlich)
  • INSTALLATION: Eine unsachgemäße Installation kann gefährlich sein. Wenden Sie sich an einen Fachmann und befolgen Sie bei der Installation die elektrischen Vorschriften.

Vorbereitung für die Installation des Victron SmartShunt

Auswahl des richtigen Modells und Zubehörs

Bevor ich den Victron SmartShunt installieren konnte, musste ich das richtige Modell auswählen. Für mich war die 500‑A‑Variante passend ( nicht wegen der Leistung, sondern eher, da sie schneller lieferbar war 🙂 ) . Als Zubehör brauchst du außerdem passende Ringkabelschuhe mit einem auf die benötigte Leistung ausgelegten Kabelquerschnitt für die „Minus“ Seite (müssen dazugekauft werden), um die Kabel sicher anzuschließen, sowie eine geeignete Sicherung für den Pluspol ( wird mitgeliefert). Der SmartShunt wird zwar auf der Minus-Seite verbaut, aber der Pluspol des Geräts muss zur Stromversorgung angeschlossen werden.

Für die spätere Integration in Home Assistant habe ich mir außerdem einen ESP32* besorgt. Dieses kleine Modul dient als Bluetooth‑Proxy und leitet BLE‑Daten ins WLAN weiter. Dazu komme ich später noch.

M5Stack Atom Lite ESP32 IoT Entwicklungsboards und Kits | Development Kit C008
  • M5Stack SKU: C008
  • ESP32-basiert, RGB-LED (SK6812)
  • Eingebaute Infrarot
  • Erweiterbare Pins & Löcher
  • Programmierplattform: Arduino, UIFlow

Sicherheitshinweise

Bevor du mit der Verkabelung beginnst und den Victron SmartShunt installieren möchtest, solltest du sicherstellen, dass deine Batterie spannungsfrei ist. Entferne gegebenenfalls die Sicherungen oder trenne das System vom Netz. Arbeite mit isoliertem Werkzeug und vermeide Kurzschlüsse. Eine saubere Installation erhöht nicht nur die Sicherheit, sondern sorgt auch für präzise Messwerte.

Verkabelung und Einbau des SmartShunt

Die Verkabelung war einfacher als gedacht, aber dennoch sind ein paar Dinge zu beachten. Um den Victron SmartShunt installieren zu können, wird der Shunt in die Minusleitung der Batterie eingebaut. Alle Verbraucher müssen hinter dem Shunt angeschlossen werden, damit der Stromfluss korrekt gemessen wird.

  1. Minuspol trennen: Ich habe zunächst den Minuspol der Batterie abgeklemmt.
  2. Shunt anschrauben: Der SmartShunt besitzt zwei große Schraubanschlüsse. Eine Seite (Batterieseite) wird direkt mit dem Minuspol der Batterie verbunden, die andere (Lastseite) führt zu den Verbrauchern.
  3. Pluspol des Shunts: Am Gehäuse befindet sich eine kleine Schraubklemme für den Pluspol. Hier habe ich eine Leitung von der Batterie über eine Sicherung angeschlossen. Das versorgt die Elektronik des Shunts.

Hinweis: Achte unbedingt darauf, die Ein- und Ausgangsseite nicht zu vertauschen. Wenn du den Victron SmartShunt installieren möchtest und die Anschlüsse vertauschst, wird der Stromfluss invertiert – die Messwerte sind dann negativ. Du kannst es zwar softwareseitig korrigieren, aber besser ist eine korrekte Installation.

Victron SmartShunt installieren in der Victron‑App

Nachdem der Shunt angeschlossen war, habe ich die Victron‑App aus dem App Store heruntergeladen. Mit ihr lässt sich der SmartShunt via Bluetooth konfigurieren. Der Pairing‑Code lautet standardmäßig 000000, falls du das Gerät noch nicht geändert hast.

Pairing und erste Schritte

Nach dem Öffnen der App hat die App den SmartShunt automatisch gefunden. Ich habe das Gerät ausgewählt und die Verbindung hergestellt. Um den Victron SmartShunt zu installieren, musste ich einige grundlegende Einstellungen vornehmen:

  • Batterie‑Kapazität: Hier habe ich den Wert meiner LiFePo4‑Batterie (200 Ah) eingetragen.
  • Ladeschluss‑Spannung: In meinem Fall 14,1 V.
  • Entladeschwelle: Ich habe 10 % gewählt, um die Batterie zu schützen.
  • Schweifstrom: 0,5 %, damit der Shunt erkennt, wann die Batterie voll ist.
  • Ladewirkungsgrad: 95 %.
  • SOC‑Reset: Es gibt die Möglichkeit, den SoC manuell zurückzusetzen. Das ist nützlich nach einem vollständigen Ladezyklus.
Victron SmartShunt installieren - Batterieeinstellungen

Hinweis: Verwende die zu deiner Batterie passenden Einstellungen. Die hier gezeigten Settings dienen nur als Beispiel!

Die App zeigt auch die MAC‑Adresse und den Verschlüsselungkey an. Letzteren habe ich mir abgeschrieben, denn für die Integration in Home Assistant benötige ich die sogenannte Advertisement‑Key, um die verschlüsselten Daten zu entschlüsseln. Beim Victron SmartShunt installieren solltest du dir diesen Schlüssel unbedingt notieren.

Victron SmartShunt installieren - Key und Mac

Victron SmartShunt installieren und Bluetooth‑Proxy nutzen

Um die Daten des SmartShunts im ganzen Haus verfügbar zu machen, reicht die Bluetooth‑Verbindung allein oft nicht aus, insbesondere wenn der Camper oder die Garage etwas weiter entfernt ist. Deshalb habe ich einen ESP32 als Bluetooth‑Proxy eingerichtet. Damit lassen sich BLE‑Geräte wie der SmartShunt über das WLAN ins Smart‑Home integrieren.

ESP32 als Bluetooth‑Proxy einrichten

Zuerst habe ich den ESP32 per USB an meinen Computer angeschlossen und die ESP‑Home‑Bluetooth Proxy- Installer ‑Seite geöffnet. Über den Wizard lässt sich mit wenigen Klicks ein generisches Bluetooth‑Proxy‑Image flashen. Nachdem der Flash‑Vorgang abgeschlossen war, habe ich den ESP32 mit meinem WLAN verbunden.

Anschließend habe ich den ESP32 direkt mit meinem Home Assistant verbunden. Im Lovelace‑Dashboard erschien ein neues Gerät, das ich „Bluetooth Proxy Video WW“ genannt habe. Nun ist der Victron SmartShunt im wahrsten Sinne des Wortes bereit für die nächste Stufe.

Tipp: Du kannst mehrere Bluetooth‑Proxies im Haus verteilen, wenn du noch andere BLE‑Sensoren hast. Sie erweitern die Reichweite und bringen die Daten zuverlässig ins Netzwerk.

Victron SmartShunt installieren - Bluetooth Proxy

Victron SmartShunt installieren in Home Assistant

Der spannendste Teil für mich war die Integration in Home Assistant. Um die verschlüsselten Daten des SmartShunts auswerten zu können, braucht man eine passende Integration.

HACS installieren und Victron BLE Integration hinzufügen

Zunächst habe ich den Home Assistant Community Store (HACS) eingerichtet. Das ist ein Zusatzmodul, das viele Community‑Integrationen bereitstellt. Über die GitHub‑Seite von Victron BLE habe ich die Integration in HACS hinzugefügt und installiert.

Danach musste Home Assistant neu gestartet werden. Unter „Einstellungen → Geräte und Dienste“ konnte ich „Victron BLE“ als neue Integration auswählen. Es wurde der SmartShunt automatisch gefunden, und ich musste nur noch den vorher notierten Advertisement‑Key eingeben. Hier ist eine typische YAML‑Struktur, mit der der Schlüssel hinterlegt wird:

Nach dem Speichern erschienen neue Sensoren in meinem Home Assistant: Batteriespannung, Ladestrom, Ladezustand und vieles mehr. Damit war der Schritt erledigt und der Victron SmartShunt erfolgreich in Home Assistant integriert.

Dashboard mit Batterieanzeige erstellen

Jetzt wollte ich die Daten nicht nur sehen, sondern auch ansprechend präsentieren. Dafür eignet sich die Button‑Card aus HACS. Mit ihr lässt sich eine Batterieanzeige gestalten, die ihre Farbe abhängig vom Ladezustand ändert.

Button‑Card konfigurieren

Ich habe eine neue Button‑Card im Dashboard erstellt und folgende Konfiguration verwendet:

type: custom:button-card
entity: sensor.shunt_battery
icon: mdi:battery
name: Batterie
show_state: true
show_label: true
label: |
  [[[
    return `${states['sensor.shunt_voltage'].state} V | ${states['sensor.shunt_current'].state} A`
  ]]]
state:
  - operator: <=
    value: 20
    color: red
  - operator: <=
    value: 50
    color: orange
  - operator: ">"
    value: 50
    color: green

Diese Card zeigt mir den aktuellen Ladezustand, die Spannung und den Strom an. Die Farbe des Symbols wechselt bei 20 % auf Rot und bei 50 % auf Orange. Für mich war es wichtig, beim Victron SmartShunt installieren auch eine optische Rückmeldung zu haben, wann die Batterie sich dem Entladungsbereich nähert.

Automatisierungen und Benachrichtigungen

Ein weiterer großer Vorteil beim Victron SmartShunt installieren ist die Möglichkeit, Automatisierungen in Home Assistant zu nutzen. Ich wollte eine Benachrichtigung bekommen, sobald der Ladezustand unter 20 % fällt. Dafür habe ich eine einfache Automation erstellt:

alias: Batteriewarnung
description: ""
triggers:
  - trigger: numeric_state
    entity_id:
      - sensor.shunt_battery
    for:
      hours: 0
      minutes: 1
      seconds: 0
    below: 20
conditions: []
actions:
  - action: notify.mobile_app_iphone_tobias
    metadata: {}
    data:
      message: Batterie ist unter 20 % Achtung !
      title: Batteriewarnung
mode: single

Mit dieser Automation bekomme ich nach einer Minute unterhalb des Schwellenwerts eine Push‑Nachricht. Dadurch kann ich reagieren, bevor die Batterie zu tief entladen wird. Beim Victron SmartShunt installieren gehört für mich eine solche Benachrichtigung unbedingt dazu.

Verlaufdiagramme und Datenanalyse

Neben der aktuellen Anzeige möchte ich auch wissen, wie sich der Ladezustand über längere Zeit verändert. Home Assistant bietet eine Verlaufdiagramm‑Karte. Ich habe für meine Batterie ein Diagramm angelegt, das die letzten 168 Stunden (sieben Tage) darstellt. So kann ich sehen, wann ich besonders viel Strom verbraucht habe und wie sich das Laden und Entladen verhält.

Es wäre auch möglich, die Daten in Grafana auszuwerten oder in ein anderes Dashboard zu exportieren. Das bietet sich an, wenn du den Victron SmartShunt und die Daten langfristig beobachten möchtest.

Alternativ lassen sich Daten auch über Grafana und Influxdb in Home Assistant visualisieren. Darauf bin ich in einem anderen Blog Beitrag genauer eingegangen.

Victron SmartShunt installieren - Verlaufsdiagramm

Weitere Anwendungsmöglichkeiten des Victron SmartShunt

Der Einsatz beschränkt sich nicht nur auf Camper. Auch im Auto kann man den Victron SmartShunt installieren, um die Starterbatterie zu überwachen. So weißt du immer, ob sie nach längerer Standzeit noch genügend Kapazität hat. Im Haus lässt sich der Shunt an Solarspeicher anschließen, um die Effizienz der Anlage zu überwachen.

Ein weiterer Vorteil: Über den VE.Direct‑Port kannst du den SmartShunt auch mit dem Cerbo GX oder anderen Victron‑Systemen verbinden. Das habe ich bisher nicht ausprobiert, es steht aber auf meiner To‑Do‑Liste. Wenn du dazu einen Erfahrungsbericht wünschst, lass es mich in den Kommentaren wissen.

Fazit: Lohnt es sich, den Victron SmartShunt zu installieren?

Für mich war es eine der lohnendsten Erweiterungen meines Campers. Seitdem ich den Victron SmartShunt installieren und in Home Assistant integrieren konnte, habe ich jederzeit einen Überblick über den Ladezustand meiner Batterie. Die Kombination aus präzisen Messwerten, ansprechender Visualisierung und praktischen Benachrichtigungen gibt mir die Sicherheit, länger autark zu bleiben und die Batterie vor Tiefentladung zu schützen.

Weitere Blogbeiträge zum Thema „smarter Camper“

Smarter Camper

Ich hoffe, diese ausführliche Anleitung hilft dir weiter. Falls du Fragen hast oder Anmerkungen, hinterlasse gerne einen Kommentar bei Youtube. Viel Spaß beim Basteln!

Radon messen im Smart Home – Gerätevergleich & Home‑Assistant‑Integration für gesunde Raumluft

👉 Direkt auf YouTube schauen und abonnieren:
Smart Home & More auf YouTube

Radon messen im Smart Home – Geräte, Analyse und Home‑Assistant‑Integration

Radon ist ein radioaktives Edelgas, das aus dem Zerfall von Uran im Erdreich entsteht und durch Risse oder Undichtigkeiten in Gebäudefundamenten in unsere Wohnräume eindringen kann. Das Gas ist unsichtbar und geruchlos; die meisten Betroffenen bemerken seine Anwesenheit erst durch Messungen. Studien zeigen, dass Radon nach dem Rauchen eine der häufigsten Ursachen für Lungenkrebs in Deutschland ist – es wird geschätzt, dass rund fünf Prozent aller Lungenkrebstodesfälle im Land auf eine erhöhte Radonbelastung zurückzuführen sind. Mit der Verabschiedung der Strahlenschutzverordnung (StrlSchV) zum Jahresende 2018 gibt es in Deutschland erstmals verbindliche Referenzwerte für Innenräume: Für Neu‑ und Altbauten gilt im Jahresmittel ein Referenzwert von 300 Becquerel pro Kubikmeter (Bq/m³). Die Weltgesundheitsorganisation (WHO) und auch das Bundesamt für Strahlenschutz (BfS) empfehlen sogar, die Radonkonzentration möglichst unter 100 Bq/m³ zu halten. Ab etwa 100 Bq/m³ steigt das Risiko, an Lungenkrebs zu erkranken, deutlich an; bei 100 Bq/m³ erhöht sich das Risiko um bis zu 16 Prozent.

Bezugsquellen*


air-Q Radon – Luftanalysator mit 5 Sensoren

  • Menschen in Radon-Risikogebieten sollten Räume in denen sie sich oft aufhalten, regelmäßig auf Radon überwachen. In Abhängigkeit von der Radon-Belastung können Maßnahmen wie Lüften oder bauliche Maßnahmen ergriffen werden.
  • Unternehmen in Radon-Risikogebieten können mit Hilfe des air-Q radon Orientierungsmessungen vornehmen, um sicherzugehen, dass Mitarbeiter keiner Belastung ausgesetzt sind. Regelmäßige Radon-Messungen sind je nach geetzlichen Rahmenbedingungen sogar vorgeschrieben.
  • Familien können sichergehen, dass die Luft unbelastet ist. Ausgasungen aus z.B. Möbeln, Teppichen oder Spielzeugen werden vom air-Q radon auch erkannt, ein gesundes Leben und gesunder Schlaf gefördert und damit Krankheiten vorgebeugt.
  • Smart Home-Nutzern und technikbegeisterten Menschen bietet der air-Q viele Möglichkeiten zur intelligenten Vernetzung.
  • Forscher und Datenanalytiker können alle Daten exportieren und sie zur eigenen Datenauswertung in Drittanbietersoftware (Excel, Statistikprogramme) nutzen. Über die air-Q eigene API (nur air-Q Science!) lassen sich alle Daten auch direkt und in Echtzeit in eine eigene Datenbank senden.


AIR-Q radon science (11 Sensoren) Luftqualitätsmessgerät, weiß

  • Menschen in Radon-Risikogebieten sollten Räume in denen sie sich oft aufhalten, regelmäßig auf Radon überwachen. In Abhängigkeit von der Radon-Belastung können Maßnahmen wie Lüften oder bauliche Maßnahmen ergriffen werden.
  • Unternehmen in Radon-Risikogebieten können mit Hilfe des air-Q radon Orientierungsmessungen vornehmen, um sicherzugehen, dass Mitarbeiter keiner Belastung ausgesetzt sind. Regelmäßige Radon-Messungen sind je nach geetzlichen Rahmenbedingungen sogar vorgeschrieben.
  • Familien können sichergehen, dass die Luft unbelastet ist. Ausgasungen aus z.B. Möbeln, Teppichen oder Spielzeugen werden vom air-Q radon auch erkannt, ein gesundes Leben und gesunder Schlaf gefördert und damit Krankheiten vorgebeugt.
  • Die Anwesenheit von Menschen im Raum erkennen und warnen, wenn eigentlich gerade niemand anwesend sein darf (CO2 Sensor notwendig!)
  • Smart Home-Nutzern und technikbegeisterten Menschen bietet der air-Q viele Möglichkeiten zur intelligenten Vernetzung.

Was ist Radon und wie gelangt es ins Haus?

Radon entsteht im natürlichen Zerfallsprozess von Uran und Radium. Im Boden bildet sich Radongas, das durch Diffusion und Unterdruck in den Oberboden aufsteigt. In Innenräumen kann es sich dann ungehindert anreichern, wenn es unbemerkt über Spalten, Fugen, Rohrdurchführungen oder poröse Materialien in Keller und Erdgeschoss eindringt. Besonders im Winter, wenn beheizte Innenräume einen höheren Unterdruck erzeugen und die Lüftung oft reduziert wird, steigt das Risiko für erhöhte Radonkonzentrationen, wie auch im Video erläutert wird. Die geografische Lage spielt ebenfalls eine Rolle: Die Radonkarte des Bundesamts für Strahlenschutz (BfS) zeigt, dass vor allem Süd‑ und Ostdeutschland, das Erzgebirge, der Schwarzwald oder ehemalige Bergbauregionen erhöhte Werte aufweisen. Dennoch können auch in radonarmen Gebieten hohe Werte auftreten, da die Werte von Gebäude zu Gebäude stark variieren.

Gesundheitliche Risiken und Grenzwerte

Radon zerfällt zu radioaktiven Tochterprodukten, die sich an kleinste Staubpartikel binden. Beim Einatmen dieser Partikel können die Radonfolgeprodukte in der Lunge verbleiben und das umliegende Gewebe durch ionisierende Strahlung schädigen. Epidemiologische Studien und Erfahrungen aus dem Bergbau belegen, dass Radon ein signifikanter Risikofaktor für Lungenkrebs ist. Der deutsche Gesetzgeber orientiert sich an der EU‑Richtlinie 2013/59/Euratom und hat einen Referenzwert von 300 Bq/m³ festgelegt; damit soll überprüft werden, ob Gegenmaßnahmen wie Lüftung oder Abdichtung erforderlich sind. Die WHO sieht bereits ab 100 Bq/m³ Handlungsbedarf.

Messgeräte im Vergleich: Exposimeter, Air‑Q, Radon Eye und EcoCube

Um die Radonkonzentration im eigenen Haus zu beurteilen, gibt es zwei grundsätzliche Messansätze: passive Messungen mit Exposimetern und aktive Messungen mit elektronischen Sensoren. Ich habe verschiedene Lösungen getestet und miteinander verglichen. Ziel des Tests war es, die Messgeräte zu bewerten und ihre Integration in Home Assistant zu untersuchen.

Exposimeter – die langfristige Methode zur Radonmessung

Radon messen im Smart Home - Exposimeter

Ein Exposimeter ist eine kleine Messdose, die über einen längeren Zeitraum (typischerweise drei bis zwölf Monate) im Wohnraum platziert wird. Weil Radon schwerer als Luft ist, sollte das Exposimeter in Bodennähe stehen. Nach der Messung wird das Exposimeter an ein Labor geschickt und analysiert. Der Vorteil: Man erhält einen zuverlässigen Mittelwert über einen langen Zeitraum, der vom BfS anerkannt wird und für offizielle Messungen (beispielsweise im Rahmen der gesetzlichen Messpflicht) genutzt werden kann. Der Nachteil: Kurzfristige Spitzenwerte oder saisonale Schwankungen werden verschleiert; während einer Lüftungsphase kann der Mittelwert niedriger ausfallen, obwohl es vorher hohe Peaks gab. Deshalb empfehle ich, das Exposimeter nur als erste Indikation zu nutzen und parallele elektronische Messungen durchzuführen.

Air‑Q Radon (Science) – High‑End‑Sensor mit vielen Messgrößen

Radon messen im Smart Home - Air-Q Radon

Der Air‑Q Radon (Science) zählt zu den umfangreichsten Radon‑Messgeräten auf dem Markt. Ich habe die „Science“-Variante verwendet, die neben Radon noch flüchtige organische Verbindungen (VOCs), Feinstaub in verschiedenen Größenklassen (PM 1, 2,5, 4, 10), Temperatur, relative und absolute Luftfeuchtigkeit, Luftdruck sowie den Taupunkt misst. Dank dieser Sensorvielfalt erhält man ein umfassendes Bild der Raumluftqualität und kann Korrelationen zwischen Radon und anderen Parametern erkennen. Die Daten werden lokal per WLAN bereitgestellt; eine Cloud‑Anbindung ist optional und lässt sich komplett deaktivieren, was im Hinblick auf Datenschutz positiv hervorzuheben ist. Das Gerät hat in der gesamten Testphase absolut zuverlässig und mit einer hohen Messfrequenz gearbeitet: Alle paar Sekunden liefert der Air‑Q einen neuen Wert. Allerdings hat die Qualität ihren Preis – je nach Ausstattung liegen die Kosten zwischen 400 und 700 Euro.

Radon Eye – Bluetooth‑Sensor mit gutem Preis‑Leistungs‑Verhältnis

Radon messen im Smart Home - RadonEye rd200

Der Radon Eye ist ein elektronischer Radon‑Sensor, der über Bluetooth kommuniziert. Im Gegensatz zum Air‑Q setzt der Hersteller vollständig auf lokale Datenübertragung; das Gerät sendet keine Daten ins Internet. Der Messintervall liegt bei etwa einer Stunde, wodurch eine gewisse Glättung erfolgt. Für viele Anwendungen reicht dieser Intervall aus, denn Radonkonzentrationen ändern sich nicht sekündlich. Der Radon Eye kostet rund 180 Euro und ist damit deutlich günstiger als der Air‑Q. Für Home‑Assistant‑Nutzer gibt es eine Integration über HACS (Home Assistant Community Store), die den Sensor problemlos in Dashboards einbindet. Wer keinen Home Assistant nutzt, kann die Werte nur vor Ort per App abrufen; eine Fernüberwachung ist ohne Heimautomation nicht vorgesehen.

EcoCube – Kompakter WLAN‑Sensor mit Cloud‑Anbindung

Radon messen im Smart Home -EcoCube (EcoSense)

Der EcoCube misst Radon ebenfalls elektronisch, allerdings werden die Daten zwingend über die Cloud des Herstellers synchronisiert. Diese Abhängigkeit empfinde ich als ein wenig störend, da man sich registrieren und persönliche Daten angeben muss. In meinen Tests hat der Sensor allerdings gute Werte geliefert; die Messfrequenz ist geringer als beim Air‑Q, aber vermutlich höher als beim Radon Eye (geschätzt kürzer als eine Stunde). Der EcoCube lässt sich über eine eigene App auslesen und per HACS in Home Assistant integrieren – allerdings funktioniert die Integration nur über die Cloud. Während der Testphase kam es zu Aussetzern, bei denen der Sensor neu gestartet werden musste; ob dies ein Einzelfall war, lässt sich nicht abschließend beurteilen. Mit einem Preis im Bereich des Radon Eye und durch seine kompakte Bauform ist der EcoCube dennoch eine interessante Option für Nutzer, die ihre Räumlichkeiten überwachen wollen.

Messstrategie: Platzierung, Auswertung und Vergleich

Die Praxistests im Video zeigen, dass die Positionierung der Sensoren entscheidend ist. Weil Radon schwerer als Luft ist, sollte man alle Geräte in Bodennähe aufstellen – idealerweise im Keller oder Erdgeschoss. Ich habe die Sensoren in meinem Studio getestet, wobei ich sie direkt nebeneinander platziert habe, um direkte Vergleiche zu ermöglichen. Radon hat eine Halbwertszeit von 3,8 Tagen. Dieser radioaktive Zerfall führt zu Messabweichungen: Selbst wenn zwei Geräte nebeneinander stehen, messen sie den Zerfall zeitlich leicht versetzt. Deshalb ist es sinnvoll, Tagesmittelwerte zu betrachten und differenzielle Analysen durchzuführen. In meinen Auswertungen, die über Grafana und ApexCharts visualisiert werden, erkennt man die Abweichungen zwischen den Tageswerten der Geräte. Die Differenzen liegen bei wenigen Becquerel – der Radon Eye misst im Schnitt etwa 3,3 Bq/m³ weniger als der Air‑Q und der EcoCube liegt 0,27 Bq/m³ darüber. Trotz unterschiedlicher Messfrequenzen verlaufen die Kurven weitgehend parallel, was für eine gute Vergleichbarkeit spricht.

Um eine Extremsituation nachzustellen, habe ich einen Lüftungsstopp simuliert, indem ich alle Türen und Fenster für einen Tag in dem Raum verschlossen gehalten habe. Innerhalb kurzer Zeit stiegen die Radonwerte auf über 175 Bq/m³ an. Sobald gelüftet wird, sinkt die Konzentration rasch wieder ab. Für Smart‑Home‑Nutzer eröffnet sich hier ein einfaches Anwendungsfeld: Man kann einen Schwellenwert definieren (zum Beispiel 100 Bq/m³) und mit Hilfe von Home Assistant eine Benachrichtigung auslösen oder automatisch Fenster‑Aktoren ansteuern. In der Grafik lässt sich erkennen, wie durch gezieltes Lüften – selbst ohne bauliche Maßnahmen – die Werte zuverlässig unter 100 Bq/m³ bleiben.

Integration in Home Assistant

Ein wesentlicher Aspekt des Videos ist die Integration der Messgeräte in Home Assistant. Ich nutze diese Plattform, um alle Sensoren zu visualisieren und Automatisierungen zu erstellen.

  • Air‑Q‑Integration: Der Air‑Q kann per WLAN mit Home Assistant verbunden werden, ohne dass Daten das lokale Netzwerk verlassen. Dank der umfangreichen Sensorik lassen sich Korrelationen zwischen Luftfeuchtigkeit, Temperatur und Radonwerten visualisieren. Ich habe die Cloud‑Funktion deaktiviert und ausschließlich auf die lokalen Daten zugegriffen.
  • Radon Eye: Für den Radon Eye steht eine HACS‑Integration zur Verfügung. Diese verwendet Bluetooth‑Low‑Energy (BLE). Voraussetzung ist ein passender BLE‑Adapter im Home‑Assistant‑Server (z. B. ein ESP32 oder ein Atom M5 Lite). Die Werte werden stündlich aktualisiert und können in Dashboards oder Automatisierungen genutzt werden.
  • EcoCube: Der EcoCube lässt sich ebenfalls per HACS einbinden – jedoch nur über die Cloud. Diese Abhängigkeit hat einen entscheidenden Nachteil: Wenn eine Internetverbindung nicht verfügbar ist oder die Server nicht erreichbar sind, erhalte ich keine Messwerte. Wer Wert auf Datenschutz legt, sollte besser zu einem der anderen Geräte greifen.

Blogbeitrag : Wie du HACS installierst ( in 3 Minuten )

Was tun bei hohen Radonwerten?

Wenn Messungen dauerhaft Werte über 300 Bq/m³ ergeben, sollten Hausbesitzer weitere Schritte einleiten. Zunächst ist regelmäßiges Stoßlüften die einfachste Maßnahme; wie die Tests zeigen, reduziert dies die Konzentration schnell. In Regionen mit sehr hoher Bodenbelastung oder bei großen Rissen im Fundament kann allerdings Lüften allein nicht ausreichen. Dann ist es sinnvoll, die Ursachen zu beseitigen. Ich bin kein Experte auf dem Gebiet, deshalb empfehle ich in solchen Fällen, sich an einen Radon‑Fachbetrieb zu wenden und entsprechende Maßnahmen zu erörtern.

Fazit und Ausblick

Ich hoffe, ihr konntet verstehen, wie wichtig eine Radonmessung im eigenen Zuhause ist. Obwohl die gesetzliche Schwelle bei 300 Bq/m³ liegt, empfiehlt es sich, Werte möglichst unter 100 Bq/m³ zu halten. Einfache Maßnahmen wie regelmäßiges Stoßlüften können Radon innerhalb kurzer Zeit senken. Moderne elektronische Sensoren erleichtern die Überwachung und ermöglichen mit Home Assistant automatisierte Maßnahmen. Der Air‑Q liefert extrem detaillierte Daten, ist jedoch kostenintensiv; der Radon Eye bietet ein gutes Preis‑Leistungs‑Verhältnis und arbeitet ohne Cloud; der EcoCube ist kompakt, erfordert aber eine Cloud‑Anbindung. Das passive Exposimeter liefert einen Langzeitwert und eignet sich zur behördlich anerkannten Messung.

Für Smart‑Home‑Enthusiasten lohnt sich die Integration der Sensoren in Home Assistant. Mit Grafana und ApexCharts lassen sich die Daten übersichtlich darstellen, Trends erkennen und Aktionen automatisieren. In einem Folgevideo werde ich die Integration der drei Sensoren in Home Assistant zeigen, wie Anbindung und Visualisierung eingerichtet werden. Den Code für die Apex‑Chart‑Cards und auch das Grafana‑Dashboard werde ich auf meinem Blog verfügbar machen.

GLKVM Remote KVM im Test – Remote Zugriff auf BIOS, GPU und mehr!

👉 Direkt auf YouTube schauen und abonnieren:
Smart Home & More auf YouTube


GLKVM Remote KVM im Praxis-Test: Der Gamechanger für Fernwartung?


Einleitung: Warum ich auf dieses Produkt gewartet habe

Manche Geräte begegnen einem und man fragt sich: „Warum habe ich das nicht früher entdeckt?“ Der GLKVM Remote KVM von GaliNet ist genau so ein Produkt. Nach langer Suche nach einer bezahlbaren, leistungsfähigen Fernwartungslösung habe ich endlich ein Gerät gefunden, das meine Anforderungen mehr als erfüllt. Und genau das möchte ich heute mit dir teilen: in aller Ausführlichkeit, mit Beispielen und klarer Meinung.

Transparenzhinweis: Ich habe dieses Produkt selbst gekauft und nicht vom Hersteller zur Verfügung gestellt bekommen. Dennoch handelt es sich bei diesem Beitrag um eine Produktvorstellung mit persönlicher Meinung.

👉 Hier kannst du den KVM Switch bestellen* : https://link.gl-inet.com/rm1-smarthomemore-amazonde-250527


Was ist ein Remote KVM und wozu braucht man das?

Ein KVM steht für Keyboard-Video-Mouse. Ein klassischer KVM-Switch erlaubt es, mehrere Rechner mit nur einer Peripherieeinheit zu bedienen. Ein Remote KVM geht einen Schritt weiter:

  • Es simuliert Tastatur, Maus und Bildausgabe über das Internet.
  • Du kannst damit einen PC aus der Ferne so bedienen, als wärst du physisch davor.
  • Zugriff ist sogar im BIOS möglich.
  • Funktioniert unabhängig vom Betriebssystem.

Vergleich mit herkömmlichen Remote-Lösungen

Funktion GLKVM RDP VNC Parsec
BIOS-Zugriff
GPU-Nutzung Eingeschränkt
Plug-and-Play-Setup
Peripherie-Simulation
ISO-Installationen


Der Lieferumfang: Alles dabei?

Im Karton enthalten:

  • GLKVM Box (Alu-Gehäuse, hochwertig verarbeitet)
  • HDMI-Kabel
  • USB-C zu USB-C Kabel
  • USB-C zu USB-A Kabel
  • Netzwerkkabel

Nicht enthalten:

  • USB-C Netzteil (aber leicht zu beschaffen)

Besonderes Highlight: Es ist wirklich alles dabei, was man zum Start braucht – Plug & Play für Fortgeschrittene.


Einrichtung: Schritt für Schritt

  1. Gerät anschließen (HDMI + USB + LAN)
  2. IP-Adresse über den Router herausfinden (Tipp: Suche nach „glkvm“)
  3. Weboberfläche aufrufen
  4. Passwort setzen (aus Sicherheitsgründen zwingend erforderlich)
  5. Firmware-Update durchführen (1-Klick Update)
  6. Verbindung testen

Schon bist du drin: Bildschirm, Tastatur, Maus – alles funktioniert, wie lokal angeschlossen.


Besondere Funktionen im Detail

1. 4K / 30 FPS & Hardware-Encoding

  • Auflösung bis 3840×2160 bei 30 FPS
  • Alternativ: FullHD/60 FPS
  • Hardware-Encoding bedeutet: Keine CPU-Belastung des Ziel-PCs
  • Ultra geringe Latenz bei der Bildübertragung

2. BIOS-Zugriff

  • Du kannst den Rechner starten, stoppen und sogar BIOS-Einstellungen ändern
  • Auch Neustarts in ein Installationsmedium sind möglich

3. Virtual Media (ISO-Mounting)

  • Lade ISO-Dateien über die Weboberfläche hoch (z. B. CloneZilla)
  • Mount als „virtuelles Laufwerk“
  • Direkt vom ISO-Image booten
  • Speicherplatz aktuell: 5,7 GB (leider etwas knapp)

4. Wake On LAN & Power Control Board

  • GLKVM kann WOL-Pakete senden
  • Mit dem optionalen GLKVM RTX Power Board kannst du den PC starten wie mit einem echten Power-Knopf

5. Audio & Mikrofon

  • Audio über HDMI funktioniert
  • Mikrofon aktuell bei mir noch nicht nutzbar

6. VPN & Cloud-Anbindung

  • über Tailscale mit einem Klick konfigurierbar
  • Auch Cloud-Zugriff über GL.inet möglich (ich empfehle lokal/VPN)


Use Case: Wie ich GLKVM nutze

Ich nutze den GLKVM für:

  • Zugriff auf meinen Schnitt-PC, wenn ich unterwegs bin
  • Zugriff auf Proxmox-Server und TrueNAS bei Fehlern
  • BIOS-Update oder OS-Installation von überall
  • Fernzugriff ohne Cloud, ohne Abos, ohne Umwege

Besonders praktisch: Ich kann mir ein Image mounten und CloneZilla-Backups remote einspielen – ein Gamechanger für den Notfall.


Kritikpunkte und Verbesserungspotential

  • Speicherplatz für Virtual Media ist knapp (5,7 GB)
  • USB-Devices lassen sich nicht direkt als ISO-Mount einbinden
  • Kein Netzteil enthalten (obwohl Standard-USB-C reicht)
  • Audio funktioniert, aber kein Mikrofon
  • Webinterface wirkt funktional, aber nicht besonders schön


Fazit: Meine ehrliche Meinung

Der GLKVM ist für mich ein absoluter Gamechanger. Ich habe lange nach einer Lösung gesucht, die genau das bietet: Voller Remote-Zugriff inkl. BIOS, keine Abos, keine Drittanbieter-Software, volle Kontrolle. Genau das liefert GLKVM – und das zu einem Preis unter 100 € (ca. 120€ mit ATX Controller).

Es ist nicht perfekt, aber das Gesamtpaket überzeugt mich. Ich werde mir definitiv noch ein weiteres Gerät für meine Rechner zulegen.


FAQ: Häufige Fragen

Kann ich das Gerät für Proxmox verwenden?
Ja, perfekt geeignet. Selbst wenn Proxmox nicht mehr startet, kannst du direkt eingreifen.

Funktioniert das auf einem Mac?
Die Weboberfläche ist systemunabhängig, funktioniert auch auf macOS.

Kann ich damit Windows neu installieren?
Ja, über Virtual Media ISO mounten und booten.

Geht auch Wake On LAN?
Ja, muss aber im BIOS des Ziel-PCs aktiviert sein.

Wie sicher ist der Remote-Zugriff?
Ohne Passwort geht gar nichts. 2FA ist ebenfalls verfügbar.


Jetzt bist du dran!

Was denkst du über den GLKVM? Coole Technik oder unnötiger Nerd-Kram?

➡️ Schreib mir deine Meinung in die Kommentare oder auf YouTube!
➡️ Folge mir für weitere Hardware-Reviews: Smart Home & More

Gli.net Comet Bezugsquelle

👉 Hier kannst du den KVM Switch bestellen* : https://link.gl-inet.com/rm1-smarthomemore-amazonde-250527

Umstieg auf SM-Light ZigBee Koordinator: Mein Erfahrungsbericht mit dem SLZB-06

👉 Direkt auf YouTube schauen und abonnieren:
Smart Home & More auf YouTube

Einleitung: Von Sonoff zu SM-Light

Nach langem Zögern war es nun soweit: Ich habe mein ZigBee-System von Sonoff auf den SM-Light SLZB-06 umgestellt. Viele andere Smart-Home-Enthusiasten haben diesen Schritt bereits gewagt, jetzt war ich dran. In diesem Beitrag teile ich meine persönliche Erfahrung mit dem Setup, der Migration und der Integration in Home Assistant. Dabei geht es um echte Alltagstauglichkeit und Praxistests – ungeschönt und ehrlich.


Transparenz-Hinweis

Ich habe den SLZB-06 ursprünglich selbst gekauft – leider war mein erster Stick defekt. Später hat mich SM-Light kontaktiert und mir ein neues Gerät sowie den P7 (mehr Speicher) und einen P8 PoE-Adapter zur Verfügung gestellt – ohne Bedingungen oder Verpflichtungen. Deshalb kennzeichne ich diesen Beitrag als Werbung, auch wenn es sich nicht um klassische bezahlte Kooperation handelt.


Warum der Umstieg?

Mein Sonoff-Stick mit CC2652P lief grundsätzlich sehr stabil. Doch durch meinen verstärkten Fokus auf virtualisierte Umgebungen wie Proxmox suchte ich nach einer LAN-basierten ZigBee-Lösung, um USB-Durchreichung zu vermeiden. Der SLZB-06 bringt genau das mit: ZigBee über LAN – PoE-fähig, stabil und zukunftssicher.


Vorbereitung & Kompatibilität

Wichtig: Es gibt verschiedene Versionen des SLZB-06. Achte auf den verwendeten Chipsatz:

  • Sonoff USB-Dongle Plus: EFR32MG21
  • SLZB-06 (Standard): CC2652P
  • SLZB-06M: EFR32MG21

Nicht kompatible Chips bedeuten: Kein direkter Adress-Umzug. Ich nutze die CC2652P-Version.

Voraussetzungen für das Setup:

  • Home Assistant (am besten mit Zigbee2MQTT)
  • Grundwissen über Add-ons, YAML und IP-Netzwerke
  • Backup deiner Home Assistant Konfiguration (dringend empfohlen!)


Physischer Aufbau

  1. SLZB-06 in 3D-gedrucktem Gehäuse
  2. PoE-Adapter mit dem Netzwerk verbinden
  3. LAN-Kabel direkt an den Koordinator anschließen

Danach wurde automatisch eine IP-Adresse vergeben – das hatte bei meinem ersten (defekten) Gerät nicht funktioniert.


Firmware-Update und Einrichtung

  1. Zugriff über die lokale IP-Adresse
  2. Firmware-Update durchführen:
    • Koordinator Firmware
    • ZigBee Firmware (Developer oder Stable)
  3. Koordinator-Adresse (IEEE) kopieren für die Geräteübernahme


Migration von Sonoff zu SLZB-06

Ziel: Die neuen Koordinatoren sollen die alte IEEE-Adresse übernehmen. So erkennen die bereits eingelernten ZigBee-Geräte den neuen Stick als bekannten Koordinator.

Schritte:

  1. Im SLZB-06-Menü: alte IEEE-Adresse setzen („Flash Custom IEE Address“)
  2. Überprüfen, ob die Adresse korrekt gesetzt wurde
  3. Zigbee2MQTT anpassen:
    • Konfiguration im Add-on und im YAML-Editor übernehmen
  4. Zigbee2MQTT neustarten


Erfolgskontrolle & Test

Bereits wenige Sekunden nach dem Start von Zigbee2MQTT erschienen die ersten Geräte wieder online. Nach kurzer Zeit waren nahezu alle 130 ZigBee-Geräte verbunden, inklusive meiner Test-Geräte und Sensoren. Schaltbefehle funktionierten sofort und ohne Verzögerung.


Vorteile des SLZB-06

  • LAN statt USB: Keine Durchreichung bei Virtualisierung nötig
  • PoE: Nur ein Kabel für Strom und Netzwerk
  • Web-Oberfläche: Zugriff auf Status, Updates und Koordinator-ID
  • Volle Kompatibilität mit Zigbee2MQTT
  • Kein Unterschied für Familienmitglieder – alles lief weiter


Mein Fazit nach 24 Stunden Dauerbetrieb

Ich bin ehrlich überrascht, wie schnell und problemlos der Umstieg funktioniert hat. Innerhalb von weniger als 20 Minuten war das komplette System wieder einsatzbereit. Kein einziges Gerät fiel aus. Niemand im Haushalt hat die Umstellung bemerkt – genau so sollte es sein.

Klare Empfehlung:

Wer auf Virtualisierung setzt oder Netzwerkintegration will, findet im SLZB-06 einen preiswerten, robusten und modernen ZigBee-Koordinator.


Bonus: Warum LAN besser ist als USB im Smart Home

  • Keine USB-Probleme bei Reboots oder Host-Wechseln
  • Skalierbar in Server-Umgebungen wie Proxmox oder TrueNAS
  • Trennung von Hardware und Host-Gerät
  • Zukunftssicher und servicefreundlich


Fragen oder Feedback?

Hast du bereits eigene Erfahrungen mit SM-Light gemacht? Oder planst du ebenfalls den Umstieg? Schreib mir gerne in die Kommentare oder auf meinem YouTube-Kanal Smart Home & More.


Dieser Beitrag basiert auf meiner persönlichen Erfahrung mit dem SLZB-06 von SM-Light. Vielen Dank an SM-Light für das Bereitstellen des funktionierenden Ersatzgeräts.